

Customization Manager for Orchid Extender

Customization Manager for Orchid Extender unlocks the full potential
of Python for customizing Sage 300. It enables quick and easy management
of the embedded Python installation used by Extender and supports installation
of most of the 200,000+ packages from the Python Packaging Index [https://pypi.org] or
any custom package from a version control system (VCS) repository.

Download Customization Manager

Note

Customization Manager version 9.0.0 has been released with
full support for Extender 9 and Python 3.8.8. After upgrading
to Extender 9 and activating the Python 3.8.8 environment you
will need to reinstall all customizations managed by Customization
Manager.

Many of the customizations currently distributed with Customization
Manager are listed in the Customization Catalogue [https://poplars.dev/catalogue.html].

[image: Customization Manager screen displaying available customizations.]

Contents

	Customization Manager for Orchid Extender

	What is the problem?

	How does it work?

	How do I get a copy?

	How do I…

	What can I use it for?

	VCS Support

	Debugging and Viewing the Log

	Help!

What is the problem?

Extender uses an embedded Python installation that does not include the usual
executables or run in a standards compliant shell. This makes it difficult to
leverage Python’s package ecosystem when using Extender to customize Sage 300.

How does it work?

Customization Manager for Orchid Extender makes it easy to install,
uninstall, and retrieve the information for customizations. It works by
temporarily creating a fully functioning Python environment and using pip,
the standard Python package manager, to manage the Extender Python
installation.

How do I get a copy?

Download Customization Manager.

API keys are used to keep your customizations private. Contact us if you
need a key.

How do I…

Have a look at out How-Tos for quick guides to working with the
interface and getting common tasks done.

What can I use it for?

Installing and removing customizations! This alone unlocks lots of new
opportunities for Extender.

Install Sage 300 Customizations

If you have a deployment key, Customization Manager allows you to install
customizations that have been created for you.

With a standard key, you can install any of the included customizations.

To see a list of the customizations that are currently being distrubuted
with Customization Manager, have a look at the Customization Catalogue [https://poplars.dev/catalogue.html].

With a developer key, you can manage the full underlying Python installation,
publish your own customizations on the index, install customizations from
VCS, perform automated testing of customizations and much more.

Leverage libraries

Need to parse an excel file [https://pypi.org/project/openpyxl/], do calculations with Julian Dates [https://pypi.org/project/jdcal/],
access a database [https://pypi.org/project/pymssql/] or web service like AWS [https://pypi.org/project/boto3/]? Maybe a little AI [https://pypi.org/project/tensorflow/] to
perform dynamic validations?

Simply build a customization for Customization Manager, leverage the libraries,
and save yourself from recreating the wheel.

Create your own

Create and publish your own libraries to keep DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself] and maximize code re-use.
Customization code that you use frequently across scripts and re-use the code
from your pajckage to save time, improve maintainability, and deliver highly
readable code focused on your customer’s business logic.

This approach makes backporting bug-fixes to existing customers simple. Simply
fix the code, publish a new version of the customization, and upgrade the
Customization in one click using the Customization Manager! No need to
redistribute new module files.

VCS Support

Pip can install directly from a Version Control System. Supported systems
include git, subversion, mercurial, and bazaar. This makes development and
testing of customizations much easier: install the customization directly from
the code repository in editable mode and upgrades will use the latest commit.

Customization Manager depends on pip, and can do all the things that pip
can, so check out pip’s docs on working with VCS [https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support] for supported schemes and
syntax.

Note that to download customizations using a VCS the binaries or supporting
libraries for the VCS must be installed seperately. At present, the SSH
transport protocol is not supported.

Debugging and Viewing the Log

Some customizations cannot be installed. In particular, those that require
custom extensions be compiled in place are not supported.

To figure out why a particular action failed, or just to see a transcript of
the customization actions performed, use the ‘View Log’ button. This will open
the logs for the last two operations in the default viewer for text (.txt)
files.

Help!

If ever things aren’t working as expected, a customization you need won’t
install, or you accidentally uninstall pip (please, never do this), drop us a
line and we will help to get you running.

How-Tos

This is a collection of guides detailing the steps to carry out
common tasks with Customization Manager.

	Install and Configure Customization Manager

	Work with Customization Manager

	Install a Customization

	Upgrade a Customization

	Uninstall a Customization

	Install Modules

	Upgrade to Customization Manager 4

	Uninstall Customization Manager

Install and Configure Customization Manager

Customization Manager is distributed as an Orchid Extender module for Sage 300.
Once installed using the Extender –> Setup –> Modules screen and
configured through Extender –> Setup –> Custom Table Editor,
it can be used to install and manage customizations to Sage 300.

If you haven’t already, download the most recent version of the Customization
Manager module before getting started.

Download Customization Manager

Installation Video

This video walks through all the steps documented below in case you
prefer a video.

 Work with Customization Manager

Work with Customization Manager

Customization Manager is intended to be a simple and easy to
use but it never hurts to have a few pointers when
getting started.

The interface is composed of the Package Grid and a set of
Action Buttons.

[image: Customization manager screen.]

Customization Manager screen with the Package Grid
above the Action Buttons.

The Pakage Grid

The package grid always displays all the customizations that
are associated with the configured API key, whether they are
installed or not.

All customizations have a short Name that is used to
uniquely identify them. In the figure above, the
first customization is named expip and is Customization
Manager.

The name is followed by a meaningful Description of what the
customization does.

There are two versions in the grid: the Installed Version and the
Available Version. The Installed Version is the version running
in the current company; it is set to - for customizations that
are not installed. The Available Version is the latest version
available for install.

All customizations have a Status. The status can be any of:

	Available: the customization is compatible and available
for installation.

	Up to Date: the customization is installed and at the
latest version.

	Upgrade Available: a newer version of the customization is
available for download.

Finally, Customization Manager checks each customization for
Compatibility with the current versions of Sage and Extender.
If the Sage and Extender versions meet the minimum requirements, Yes is
displayed.
If they do not meet the minimum requirements,
the compatiblity issue, either a Sage or Extender version, is displayed
here.

The Action Buttons

The actions buttons are enabled and disabled based on the highlighted
customization. There are two that never change:

	Close: close Customization Manager without taking any
further action.

	View Log: open the log files from the two most recent
actions and display them in the default text editor.

All the others change state based on whether the highlighted customization
is installed, has an upgrade available, and is compatible.

	Install: Install a Customization

	Upgrade: Upgrade a Customization

	Uninstall: Uninstall a Customization

	Install Modules: for sites with multiple companies,
Install Modules

 Install a Customization

Install a Customization

Installing a customization with Customization Manager is easy:

	Open the Extender –> Setup –> Customization Manager screen.

	A grid displays all the customizations that have been built for you.
Highlight the customization and click Install.

	A message is displayed with the result.

	Close the Customization Manager window.

All done. Restart the Sage Desktop to allow Extender to register the changes.

The Install Button is disabled

The Install button will be disabled if:

	the customization is already installed, in which case its status will be
either Up to date or Upgrade Available;

	the current Sage or Extender versions are not compatible with the
customization, the compatibility field will indicate which versions are
required.

If you’re having trouble installing a customization, contact us.

 Upgrade a Customization

Upgrade a Customization

Upgrading a customization with Customization Manager is easy:

	Open the Extender –> Setup –> Customization Manager screen.

	Highlight the customization row. The Status column will
show Upgrade Available if a newer version can be installed.

	Click the Upgrade button.

	A message is displayed displaying the result.

	Close the Customization Manager window.

The customzation is now upgraded. Restart the Sage desktop to allow
Extender to register new components.

The Upgrade Button is disabled

The Upgrade button will be disabled if:

	the customization is not yet installed, in which case its status will be
Available;

	the current Sage or Extender versions are not compatible with the
customization, the compatibility field will indicate which versions are
required.

If you’re having trouble installing modules for a customization, contact us.

 Uninstall a Customization

Uninstall a Customization

Uninstalling a customization is as easy as installing one:

	Open the Extender –> Setup –> Customization Manager screen.

	Highlight the customization and click Uninstall.

	A message is displayed with the result.

	Close the Customization Manager window.

Done.

The Uninstall Button is disabled

The Uninstall button will be disabled if the customization
is not installed!

If you’re having trouble uninstalling a customization, contact us.

 Install Modules

Install Modules

In a multi-Company environment, the module files that enable a customization
are only enabled in the Company from which the customization is first
installed. The customization package is installed system wide and is
easily enabled in other companies.

To enable a customization in other companies, you will need to install the
customization modules:

	Connect to the Company the customization needs installing in.

	Open the Extender –> Setup –> Customization Manager screen.

	A grid displays all the customizations that have been built for you.
Highlight the customization and click Install Modules.

	A message is displayed with the result.

	Close the Customization Manager window.

Done. Restart the Sage Desktop to allow Extender to register the changes
in this company.

The Install Modules Button is disabled

The Install Modules button will be disabled if:

	the customization is not yet installed, in which case its status will be
Available;

	the current Sage or Extender versions are not compatible with the
customization, the compatibility field will indicate which versions are
required.

If you’re having trouble installing modules for a customization, contact us.

 Upgrade to Customization Manager 4

Upgrade to Customization Manager 4

Customization Manager 4.0.0 adds a number of new features,
such as postinstall scripts, test data fixture support, and
improved version detection. It also has an improved
interface that makes managing customizations easier.

If you’re running an older version of Customization Manager,
you probably installed it from a module file. Once installed
from a module file, Customization Manager can
upgrade itself.
This is the easiest path to upgrade.

If you’d rather install the module file again manually, see the
instructions in the Upgrade with Module File section instead.

Upgrade with Customization Manager

To get Customization Manager to manager and upgrade itself,
install the expip package:

	Open Customization Manager.

	Select the expip package.

	Click Install or Upgrade.

That’s it. Customization Manager is now fully upgraded and the
Desktop environment fixed up.

Upgrade with Module File

When upgrading from a previous version of Customization Manager,
a new icon will be created on the desktop. For users that are
upgrading, this will result in two identical icons, only one
of which will work.

To avoid this situation, remove the existing icon before performing
the upgrade. To remove the existing icon:

	Navigate to Extender –> Setup –> Scripts.

	Highlight the EXPIP_poplar.py file. Right click and select
Add to Desktop.

	A window with the desktop tree is displayed. Expand
Extender –> Setup.

	Highlight the Customization Manager icon. Push the
Delete (Del) key on your keyboard to remove the icon.

	Do not use the Save or Cancel buttons in this step!
Close the window using the close X in the title bar.

Warning

If you accidentally close the window using a button, fear not, no
harm has been done. However, you’ll have to repeat the process
from the beginning.

	When prompted, save your changes to the desktop layout.

	Before closing the Scripts panel, highlight the
EXPIP_poplar.py file, and push the Delete (Del) key on
your keyboard to delete it - it will be replaced with a new
script under a different name.

	Close all windows and restart Sage.

Once the icon is removed, you’re free to upgrade Customization Manager
by installing the new version of the module, or selecting the expip
customization in Customization Manager and upgrading it.

 Uninstall Customization Manager

Uninstall Customization Manager

Customization Manager is distributed as an Extender module. Before
removing the application, consider
uninstalling all the customizations
managed by it first.

Uninstall the Module

Uninstall the module from the Extender Modules screen.

	Open the Extender –> Setup –> Modules screen.

	Highlight the Customization Manager module.

	Press the Del (delete) key on your keyboard.

Customization Manager has been removed.

Remove the Icon from the Desktop

If the Customization Manager icon has not been removed from the desktop,
you can remove it manually:

	Open the Extender –> Setup –> Script screen.

	Highlight the first script in the grid, right click, and select
Add to Desktop.

	A window with the desktop tree is displayed. Expand
Extender –> Setup.

	Highlight the Customization Manager icon. Push the
Delete (Del) key on your keyboard to remove the icon.

	Do not use the Save or Cancel buttons in this step!
Close the window using the close X in the title bar.

Warning

If you accidentally close the window using a button, fear not, no
harm has been done. However, you’ll have to repeat the process
from the beginning.

	When prompted, save your changes to the desktop layout.

Restart the Sage desktop to complete the removal of the icon.

 Packaging Customizations

Packaging Customizations

Customization Manager enables us to distribute Sage 300 customizations as
Python packages. This has a number of advantages, including distribution
leveraging standard Python tools, the ability to automatically install and
manage dependencies, and keeping everything, including the documentation, code,
and test data, together.

Distributing Sage 300 customizations as Python Packages is a new approach.
Although the principles and tools will be familiar to Python developers,
they may be new to others. Learn more about
Building Packaged Customizations

 Building Packaged Customizations

Building Packaged Customizations

Customization Manager enables many
new development and code deployment workflows. In this article we’ll
work our way up to a simple workflow that focuses delivered code on
customer’s business logic, makes code re-use easier, and backporting
fixes to existing customers a breeze.

A simple problem

Let’s start with a simple use case:

My customer needs to set an option field to indicate whether an
order needs a compliance check before shipping. The field
should be set to true if any of the items in the order is in
the account set with code “COMP”.

Extender makes this easy. One solution is to check orders after update
or insert and set the optional field accordingly. At a high level:

on insert:
 for each line in the order:
 if the item has an account set code == "COMP":
 set the optional field to True

A simple solution

Extender allows us to create a view script that will trigger on Insert or
Update of an Order header. Handling the insert event only, we may end up with
something like this attached to the OE0520 view:

from accpac.py import *

def onOpen():
 return Continue

def onAfterInsert(result):
 """Check the account set of all items and set the optional field."""
 # Open the order lines
 oeordd = self.openDataSource("dsOEORDD")

 # Seek to the first line
 oeordd.browse("")

 # Assume no compliance check is required
 compliance_required = False

 # Check all lines for any item requiring a check
 while oeordd.fetch() == 0:
 if oeordd.get("ACCTSET") == "COMP":
 compliance_required = True
 # If any on item matches we can stop looking
 break

 # Set the optional field, if required.
 # Open the header optional fields
 oeordho = self.openDataSource("dsOEORDHO")

 # Try reading the field to see if it already exists.
 oeordho.recordClear()
 oeordho.put("OPTFIELD", OPTFIELD)
 _read = oeordho.read()

 # If it exists, update the field
 if _read == 0:
 if oeordho.read("VALUE") != compliance_required:
 oeordho.put("VALUE", compliance_required)
 _update = oeordho.update()
 if _update != 0:
 showMessageBox("Compliance Optional Field - "
 "Failed to set the field.")
 # If it does not, insert a new record
 else:
 oeordho.recordGenerate()
 oroedho.put("OPTFIELD", OPTFIELD)
 oeordho.put("VALUE", compliance_required)
 _insert = oeordho.insert()
 if _insert != 0:
 showMessageBox("Compliance Optional Field - "
 "Failed to set the field.")

Rinse and repeat for the update. This solution isn’t pretty and needs
a good refactor but it works. With all the logic required to
interact with the views readability is not good - it is hard to tease
the business logic out.

Another request

Close on the heels of the first request, another customer requires that an
optional field be set on an order if an item begins with a particular string.

Patterns begin to emerge, things that are required to deliver on the customer’s
business logic. For example:

	Open a datasource, clear it, seek to the first record, and iterate.
- Check all items in the order.

	Check for the existence of a record using put and read.
- Find whether an optional field already exists.

	Insert or update an optional field.
- If it exists, it needs updating, otherwise inserting.

Before starting the second request, let’s refactor the reusable parts out
from the first one into a new file called extools.py

from accpac import *

def all_records_in(datasourceid):
 """Generator that yields all records in a datasource."""
 ds = self.openDataSource(datasourceid)
 ds.browse("")

 while ds.fetch() == 0:
 yield ds

def _optional_field_exists_in(datasource, field):
 """Check if a record with field = value exists."""
 datasource.recordClear()
 datasource.put("FIELD", field)
 if datasource.read() == 0:
 return True
 return False

def insert_or_update_optional_field(datasourceid, field, value):
 """Check if an optional field exists, if so update, otherwise insert"""
 ofds = self.openDataSource(datasourceid)
 ofds.recordClear()

 if _optional_field_exists_in(ofds, field):
 ofds.put("VALUE", value)
 if ofds.update() != 0:
 return false
 else
 ofds.recordGenerate()
 ofds.put("FIELD")
 ofds.put("VALUE", value)
 if ofds.insert() != 0:
 return False

 return True

Now, let’s use our new tools in the solution.

from accpac.py import *
from extools import (insert_or_update_optfield, all_records_in,)

CODE = "HAL"
OPTFIELD = "COMPLIANCE"

def onOpen():
 return Continue

def onAfterInsert(result):
 """Check the first characters of items and set the optional field."""
 # Assume no compliance check is required
 compliance_required = False

 # Check all lines for any item requiring a check
 for line in all_records_in("dsOEORDD"):
 if line.get("ITEM").startswith(CODE):
 compliance_required = True

 result = insert_or_update_optional_field(
 "dsOEORDHO", OPTFIELD, compliance_required)

 if not result:
 showMessageBox(
 "Failed to update {} optional field.".format(OPTFIELD))

 return Continue

That is a lot more readable - imagine trying to discuss what you’ve built with
a client. Walking through the refactored version is much easier and reads
almost exactly like the pseudo-code. The script is focused entirely on the
customer’s business problem.

Packaging it all up

Now we just need a way to distribute the new package to users along
with our script.

Creating a python package is easy, we can create one for our extools
by creating a new directory in the right format and adding
setup.py and empty __init__.py files.

extools/
 |- __init__.py
 |- setup.py
 |- docs/
 |- tests/
 |- extools/
 |- __init__.py
 |- extools.py

The special setup.py file contains instructions on how to install our
package and what it depends on. Our simple package has no dependencies 2
but still requires a simple setup.py.

Note that documentation and testing are included directly in the package,
along side the code, keeping all the elements of the customization together.

	2

	It depends on accpac.py but that isn’t registered in package
indexes.

from setuptools import setup

setup(
 name='extools',
 version='0.1',
 author='cbinckly',
 url='https://2665093.ca',
 author_email='cbinckly@gmail.com',
 packages=['extools'],
 description='Tools for Orchid Extender.',
 install_requires=[],
)

That is a minimum viable setup file. The setuptools package provides loads
of other options that include advanced metadata, file installation, shortcuts,
and more. Check out the Hitchhiker’s Guide to Python Packaging [https://the-hitchhikers-guide-to-packaging.readthedocs.io/en/latest/] for
excellent docs on the topic.

Now that we have our package, we just need to make it publicly available.
We can publish on pypi.org [https://packaging.python.org/tutorials/packaging-projects/] or create a VCS repository at Github [https://github.com],
bitbucket [https://bitbucket.org], or any other VCS server.

Now, the customer can deploy the script and install the extools package in
two clicks using Customization Manager.

A bug report

All is well until a report comes in of a bug: the first script doesn’t always
check all records. After some debugging, neither of them
(or the three sebsequently delivered) always check all records!

It turns out data sources need to be .recordClear() before browsing.
It is a simple one line change, before running <datasource>.browse("") we
need to add <datasource>.recordClear().

For the first customer, a new script needs to be issued. For the second and
all subsequent customers, if the extools package is updated once all
they need to do is a two click upgrade. No fiddling with updated files for
each customer, the fix is easily backported.

Conclusion

This is just one example of a workflow that is enabled by easy package
management for Extender. It helps keep delivered code focused on the
business logic, reduces the time to develop by encouraging and making
reuse easy, and makes it simple to deploy fixes and backports
to existing customers - all of which improve code quality, customer
experience, and decrease support engagements.

See what the extools [https://extools.rtfd.io] package has become.

 Index

Index

 Pattern for Customizations using Packages

Pattern for Customizations using Packages

Customization Manager enables a whole host of
new development and code deployment workflows for Sage 300 customizations.
In particular, it makes code re-use, both within and across projects,
straight-forward.

This article walks through
refactoring an Extender module into three components:

	Extender module focused only on client business logic (VOLUMETAX.vi)

	Package containing general functions (extools)

	Package containing module specific functions (2665093-volumetax)

The Customer Problem

Let’s start with a real use case:

A food distributor requires Sage calculate a tax on some liquid
products based on volume and not dollar value for sales in
a specific area.

This applies to Orders, Invoices, and Shipments.

The First Solution

After some back and forth with the client, a design emerges:

	All affected items will have a tax class of “VOLUME”

	All affected customers will have a tax class of “VOLUME”

	Item volume can be determined by using the conversion factors in IC.

When a user inputs a new detail line in any of the documents, if the item
and customer both have a tax class of VOLUME, manually calculate the
item tax using the tax rate from the VOLUME tax table multiplied by the item
quantity scaled by the conversion factor.

Because the total tax on a document header must match the sum of the detail
lines tax will also need to be calculated for the document before it is posted
if it contains items taxed by volume.

First Cut of the Module

Using Extender we can create view scripts that will perform the tax
calculations and update the document headers and details when the tax
classes are set for the customer and item. A script will be required for each
view, so we will wrap them in a module to make them more manageable.

Let’s start a new module file.

	1
2
3
4
5
6
7

	[MODULE]
id=VOLUMETAX
name=Volume Tax
desc=Adjust order, shipping, invoice, and credit note taxes based on volume.
company=2665093 Ontario Inc.
version=0.1
website=None

Now, frame out the first two scripts. Let’s start with invoices.

	 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	[SCRIPT]
FILENAME=VOLUMETAX.INVOICEDETAIL
>>> SCRIPT >>>
###
OE0400 - Volume Tax - Invoice Details
#
This script automatically calculates the Volume tax for an invoice detail
line If and only if both the customer and the item have a tax authority of
TAXAUTH (default VOLUME)
###
from accpac import *
<<< SCRIPT <<<

[VIEWSCRIPT]
VIEWID=OE0400
UNIQID=2019050100000004
ACTIVE=1
ORDER=0
SCRIPT=VOLUMETAX.INVOICEDETAIL

[SCRIPT]
FILENAME=VOLUMETAX.INVOICEHEADER
>>> SCRIPT >>>
##
OE0420 - Volume Tax - Invoice Header
#
This script automatically calculates the Tax Base 1 and Tax Amount 1
for an invoice header if the customer has a tax authority of
TAXAUTH (default VOLUME)
##
from accpac import *
<<< SCRIPT <<<

[VIEWSCRIPT]
VIEWID=OE0420
UNIQID=2019050100000004
ACTIVE=1
ORDER=0
SCRIPT=VOLUMETAX.INVOICEDETAIL

Let’s just dive in and start writing the code for the invoice detail lines
(OE0400) script.

We will need access to the customer information to find their tax authority,
so it would be useful to have access to the composed OE document header view.

	1
2
3
4
5
6
7

	from accpac import *

def onBeforeCompose(event):
 global oehdr
 if len(event.views):
 oehdr = event.views[0]
 return Continue

With that available, try implementing the meat in onBeforeInsert. A good
place to start is to check the pre-conditions for calculating the tax are met.

	10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	TAXAUTH = "VOLUME"

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action to be taken
 if not oehdr:
 showMessageBox("Volume Tax: Order Detail is not composed. Continuing.")
 return Continue

 # If the customer tax authority doesn't match, no action
 if oehdr.get("TAUTH1") != TAXAUTH:
 showMessageBox("Volume Tax: Order Tax Auth is {}, not {}. Continuing".format(
 oehdr.get("TAUTH1"), TAXAUTH))
 return Continue

 # If the item tax authority doesn't match, continue
 if me.get("TAUTH1") != TAXAUTH:
 showMessageBox("Volume Tax: Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

That is a good start. But there is a pattern emerging, showing a message box
with the Volume Tax: leading text. We can refactor that out into a method so
we never forget to include it and the user always knows our script is the one
speaking.

TAXAUTH = "VOLUME"
TITLE = "Volume Tax"

def alert(message):
 showMessageBox("{}: {}".format(TITLE, message))

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action
 if not oehdr:
 alert("Order Detail is not composed. Continuing.")
 return Continue

 # If the customer tax authority doesn't match, no action
 if oehdr.get("TAUTH1") != TAXAUTH:
 alert("Order Tax Auth is {}, not {}. Continuing".format(
 oehdr.get("TAUTH1"), TAXAUTH))
 return Continue

 # If the detail line tax authority doesn't match, no action
 if me.get("TAUTH1") != TAXAUTH:
 alert("Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

That’s better. I am not sure about displaying the label in line, instead
it may be better to add newlines between the title and the message. Now
I can decide later and will only need to change the alert function.

Now that we know the pre-conditions are being met, let’s do the manual
tax calculation for the detail line.

def onBeforeInsert():
 # ... pre-conditions checking ...

 # Set tax to calculate manually
 _put = oehdr.put("AUTOTAXCAL", 0)
 if _put != 0:
 alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Checkpoint - debugging to make sure we are capturing the right
 # details.
 alert("Tax Authority for Item and Customer is {}".format(TAXAUTH))

 # Get tax rate from the tax rate tables.
 tax_rate_view = openView("TX0004", 2)
 _auth = tax_rate_view.put("AUTHORITY", TAXAUTH)
 _sales = tax_rate_view.put("TTYPE", 1)
 _bclass = tax_rate_view.put("BUYERCLASS", oehdr.get("TCLASS1"))

 # Make sure the puts succeded, they return 0 on success.
 if sum([_auth, _sales, _bclass]) != 0:
 alert("Unable to put values to read tax rate.")
 return Continue

 # The read fails because the tax table does not exist.
 if tax_rate_view.read() != 0:
 alert("Could not find tax rate table entry for {}".format(
 TAXAUTH))
 return Continue

 # Calculate the item tax, using the scaled quantity as the base.
 tax_base = me.get("QTYSHIPPED") * me.get("CONVERSION")
 tax_class = me.get("TCLASS1")
 tax_rate = tax_rate_view.get("ITEMRATE{}".format(tax_class))
 tax_owed = tax_base * (tax_rate / 100)

 # Checkpoint
 alert("Tax info: base {}, class {}, rate {}, owed {}.".format(
 tax_base, tax_class, tax_rate, tax_owed))

 _tbase = me.put("TBASE1", round(tax_base,2))
 _trate = me.put("TRATE1", round(tax_rate,2))
 _tamt = me.put("TAMOUNT1", round(tax_owed,2))

 if sum([_tbase, _trate, _tamt]) != 0:
 alert("Could not put item tax base, rate, or amount.")

 return Continue

This is not a bad first implementation. There are a couple things that
are not intuitive. For example, the use of python’s built in sum to
check that view operations have succeeded. We can improve the readability by
wrapping it in a different name.

def success(*args):
 """Were view operations successful?"""
 if sum(args) == 0:
 return True
 return False

Now we can refactor a little and change the code to use the new success method.

if sum([_tbase, _trate, _tamt]) != 0:
 alert("Could not put item tax base, rate, or amount.")

becomes

if not success(_tbase, _trate, _tamt):
 alert("Could not put item tax base, rate, or amount.")

Alright. On to the header script. We will need access to the
detail lines to sum the tax. Get a reference on compose, just as we did for
the oehdr in the detail line script.

def onBeforeCompose(e):
 global oedtl
 if len(views):
 oedtl = e.views[0]

 return Continue

And into the meat, the onBeforeInsert implementation.

def onBeforeInsert():
 global oedtl

 # If the view is not composed, no action
 if not oedtl:
 # View is not composed, no action to be taken
 alert("Order header is not composed. Continuing.")
 return Continue

 # If the header tax authority doesn't match, no action
 if me.get("TAUTH1") != TAXAUTH:
 alert("Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

 # Set tax to calculate manually
 _put = me.put("AUTOTAXCAL", 0)

 if not success(_put):
 alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Seek to the first line of the detail view.
 _rc = oedtl.recordClear()
 _browse = oedtl.browse("LINETYPE = 1", 1)

 if not success(_rc, _browse):
 alert("Could not get item information.")
 return Continue

 # Sum the tax due for the document header.
 tbase1 = 0
 tamt = 0
 while success(oedtl.fetch()):
 item_base = oedtl.get("TBASE1")
 item_amount = oedtl.get("TAMOUNT1")

 tbase1 += item_base
 tamt += item_amount

 # Checkpoint
 alert("Calculated header totals: base {}, amount {}".format(tbase1, tamt))

 _tbase = me.put("TBASE1", tbase1)
 _tamt = me.put("TAMOUNT1", tamt)

 if not success(_tbase, _tamt):
 alert("Could not put item tax base or amount in header.")

 return Continue

The alert and success functions got reused in this script, so they need
to be copy/pasted in. Now if I want to add newlines to my alerts, more than
one change will be required. I’m not keeping very DRY.

The checkpoints in the code are useful during development but it is easy to
forget they’re there and ship them by accident. It would be nice to toggle
them on and off like debug logging. Let’s add a debug(message) function
that only alerts when a constant, DEBUG, is set.

DEBUG = True

def debug(message):
 if DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, TITLE, message))

Let’s replace all non-essential alerts with debugs and see where we are.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

	[MODULE]
id=VOLUMETAX
name=Volume Tax
desc=Adjust order, shipping, invoice, and credit note taxes based on volume.
company=2665093 Ontario Inc.
version=0.1
website=None

[SCRIPT]
FILENAME=VOLUMETAX.INVOICEDETAIL
>>> SCRIPT >>>
###
OE0400 - Volume Tax - Invoice Details
#
This script automatically calculates the Volume tax for an invoice detail
line If and only if both the customer and the item have a tax authority of
TAXAUTH (default VOLUME)
###
from accpac import *

DEBUG = True
TAXAUTH = "VOLUME"
TITLE = "Volume Tax"

Utility functions

def alert(message):
 """Show a message box with title."""
 showMessageBox("{}: {}".format(TITLE, message))

def debug(message):
 """Show a message box with roto ID and title if DEBUG is truthy."""
 if DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, TITLE, message))

def success(*args):
 """Were view operations successful?"""
 if sum(args) == 0:
 return True
 return False

View hooks

def onBeforeCompose(event):
 global oehdr
 if len(event.views):
 oehdr = event.views[0]
 return Continue

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action
 if not oehdr:
 alert("Order Detail is not composed. Continuing.")
 return Continue

 # If the customer tax authority doesn't match, no action
 if oehdr.get("TAUTH1") != TAXAUTH:
 debug("Order Tax Auth is {}, not {}. Continuing".format(
 oehdr.get("TAUTH1"), TAXAUTH))
 return Continue

 # If the detail line tax authority doesn't match, no action
 if me.get("TAUTH1") != TAXAUTH:
 debug("Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

 # Set tax to calculate manually
 _put = oehdr.put("AUTOTAXCAL", 0)
 if not success(_put):
 alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Checkpoint - debugging to make sure we are capturing the right
 # details.
 debug("Tax Authority for Item and Customer is {}".format(TAXAUTH))

 # Get tax rate from the tax rate tables.
 tax_rate_view = openView("TX0004", 2)
 _auth = tax_rate_view.put("AUTHORITY", TAXAUTH)
 _sales = tax_rate_view.put("TTYPE", 1)
 _bclass = tax_rate_view.put("BUYERCLASS", oehdr.get("TCLASS1"))

 # Make sure the puts succeded, they return 0 on success.
 if not success(_auth, _sales, _bclass):
 alert("Unable to put values to read tax rate.")
 return Continue

 # The read fails because the tax table entry does not exist.
 if not success(tax_rate_view.read()):
 alert("Could not find tax rate table entry for {}".format(
 TAXAUTH))
 return Continue

 # Calculate the item tax, using the scaled quantity as the base.
 tax_base = me.get("QTYSHIPPED") * me.get("CONVERSION")
 tax_class = me.get("TCLASS1")
 tax_rate = tax_rate_view.get("ITEMRATE{}".format(tax_class))
 tax_owed = tax_base * (tax_rate / 100)

 debug("Tax info: base {}, class {}, rate {}, owed {}.".format(
 tax_base, tax_class, tax_rate, tax_owed))

 _tbase = me.put("TBASE1", round(tax_base,2))
 _trate = me.put("TRATE1", round(tax_rate,2))
 _tamt = me.put("TAMOUNT1", round(tax_owed,2))

 if not success(_tbase, _trate, _tamt):
 alert("Could not put item tax base, rate, or amount.")

 return Continue
<<< SCRIPT <<<

[VIEWSCRIPT]
VIEWID=OE0400
UNIQID=2019050100000004
ACTIVE=1
ORDER=0
SCRIPT=VOLUMETAX.INVOICEDETAIL

[SCRIPT]
FILENAME=VOLUMETAX.INVOICEHEADER
>>> SCRIPT >>>
##
OE0420 - Volume Tax - Invoice Header
#
This script automatically calculates the Tax Base 1 and Tax Amount 1
for an invoice header if the customer has a tax authority of
TAXAUTH (default VOLUME)
##
from accpac import *

DEBUG = True
TAXAUTH = "VOLUME"
TITLE = "Volume Tax"

Utility functions

def alert(message):
 """Show a message box with title."""
 showMessageBox("{}: {}".format(TITLE, message))

def debug(message):
 """Show a message box with roto ID and title if DEBUG is truthy."""
 if DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, TITLE, message))

def success(*args):
 """Were view operations successful?"""
 if sum(args) == 0:
 return True
 return False

View hooks

def onBeforeCompose(e):
 global oedtl
 if len(views):
 oedtl = e.views[0]

 return Continue

def onBeforeInsert():
 global oedtl

 # If the view is not composed, no action
 if not oedtl:
 # View is not composed, no action to be taken
 alert("Order header is not composed. Continuing.")
 return Continue

 # If the header tax authority doesn't match, no action
 if me.get("TAUTH1") != TAXAUTH:
 alert("Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

 # Set tax to calculate manually
 _put = me.put("AUTOTAXCAL", 0)

 if not success(_put):
 alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Seek to the first line of the detail view.
 _rc = oedtl.recordClear()
 _browse = oedtl.browse("LINETYPE = 1", 1)

 if not success(_rc, _browse):
 alert("Could not get item information.")
 return Continue

 # Sum the tax due for the document header.
 tbase1 = 0
 tamt = 0
 while success(oedtl.fetch()):
 item_base = oedtl.get("TBASE1")
 item_amount = oedtl.get("TAMOUNT1")

 tbase1 += item_base
 tamt += item_amount

 # Checkpoint
 debug("Calculated header totals: base {}, amount {}".format(tbase1, tamt))

 _tbase = me.put("TBASE1", tbase1)
 _tamt = me.put("TAMOUNT1", tamt)

 if not success(_tbase, _tamt):
 debug("Could not put item tax base or amount in header.")

 return Continue
<<< SCRIPT <<<

[VIEWSCRIPT]
VIEWID=OE0420
UNIQID=2019050100000004
ACTIVE=1
ORDER=0
SCRIPT=VOLUMETAX.INVOICEHEADER

There is a fair bit of duplication across the scripts, and it isn’t going to
any better. The remaining two document types require nearly idenitcal code.
The only significant change is the name of the quantity field, ordered or
shipped.

The full module has six copies of all utility functions and constants. The
logic to handle the detail lines is there in triplicate, same for the header.

So when the client comes back and says the title definitely needs newlines
in the alerts, there are six changes instead of one. And it gtes worse…

A Change in Requirements

After testing the module, the client provides feedback:

	Alerts need newlines

	The conversion isn’t correct, can we use an optional field on the item
instead? They have one setup called VOLCONV.

Alright, let’s add a some code to all three detail scripts to look up a new
conversion factor from an item optional field.

CONVOPTFIELD = "VOLCONV"

def onBeforeInsert():
 ...
 # The read fails because the tax table entry does not exist.
 if not success(tax_rate_view.read()):
 alert("Could not find tax rate table entry for {}".format(
 TAXAUTH))
 return Continue

 icof = openView("IC0313")
 if not icof:
 alert("Failed to open the optional field view. "
 " Volume tax calculations disabled.")
 return Continue

 _rc = icof.recordClear()
 _pi = icof.put("ITEMNO", itemno)
 _po = icof.put("OPTFIELD", CONVOPTFIELD)
 _r = icof.read()
 conv = icof.get("VALUE")

 if not success(_rc, _pi, _po, _r) or not conv:
 _alert("Failed to read the {} optional field for {}."
 " Volume tax calculations disabled.".format(
 CONVOPTFIELD, itemno))
 return Continue

 tax_base = me.get("QTYSHIPPED") * conv
 ...

With that change in place, the scripts are working for the client. But we have
a module with over 1000 lines of code to express two very simple pieces of
business logic.

The Logic of Modules

Let’s try something, strip the module down and take all code related to
interacting with the views out. The module code should read like a concise
statement of the client’s business logic.

Where does the code go? Reviewing what we’ve written, what if we were to:

	Put the utility functions in a library that can be used across projects into
a package.

	Put the constants and code related to client specific code (like the tax
calculation) into another package.

There are a few other utility functions hiding in there, we could have
function to:

	Check the pre-requisites

	Retrieving the item tax rate from the tax tables

	Iterating over all order lines

	Retrieving the value of an optional field

With this in place, the module code will be significantly reduced and
our code will actually be reusable and maintainable.

extools Package

Let’s start with the functions that we could potentially reuse across projects:

	alert and debug for notifications

	success for testing the results of view calls

	all_lines_in(detail_view) a new python generator helper to wrap opening
and seeking to the first record and yielding all lines of a detail view.

	item_optfield_value(item, field) a helper to open the item optional field
view and return the value of the field or None if unset.

extools.py
from accpac import showMessageBox

def alert(message):
 """Show a message box with title."""
 showMessageBox("{}: {}".format(TITLE, message))

def debug(message):
 """Show a message box with roto ID and title if DEBUG is truthy."""
 if DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, TITLE, message))

def success(*args):
 """Were view operations successful?"""
 if sum(args) == 0:
 return True
 return False

def all_lines_in(detail_view):
 """Seeks the detail view to the first record and yields each one."""
 _rc = detail_view.recordClear()
 _browse = detail_view.browse("LINETYPE = 1", 1)

 if not success(_rc, _browse):
 alert("Could not get detail view lines.")
 return

 while success(detail_view.fetch()):
 yield detail_view

def item_optfield_value(itemno, field):
 """Get the value of an item optional field or None if unset."""
 icof = openView("IC0313")
 if not icof:
 alert("Failed to open the optional field view. "
 " Volume tax calculations disabled.")
 return None

 _rc = icof.recordClear()
 _pi = icof.put("ITEMNO", itemno)
 _po = icof.put("OPTFIELD", field)
 _r = icof.read()
 val = icof.get("VALUE")

 if not success(_rc, _pi, _po, _r) or not val:
 _alert("Failed to read the {} optional field for {}."
 " Volume tax calculations disabled.".format(
 field, itemno))
 return None

 return val

def itemrate_for_authority(tax_auth, header_tax_class, item_tax_class,
 tax_type=1):
 """Get the itemrate for a given authority and item/header tax class."""
 try:
 tax_rate_view = openView("TX0004", 99)
 _auth = tax_rate_view.put("AUTHORITY", tax_auth)
 _sales = tax_rate_view.put("TTYPE", tax_type)
 _bclass = tax_rate_view.put("BUYERCLASS", header_tax_class)

 if not success(_auth, _sales, _bclass):
 alert("Unable to put values to read tax rate.")
 return None

 # The read fails if the tax table entry does not exist.
 if not success(tax_rate_view.read()):
 alert("Could not find tax rate table entry for {}".format(
 taxauth))
 return None

 # Return the correct item rate.
 return tax_rate_view.get("ITEMRATE{}".format(item_tax_class))
 finally:
 # Make sure that, regardless of what happens, the tax rate view is
 # closed if it has been opened.
 if tax_rate_view:
 tax_rate_view.close()

There is a minor problem here: alert and debug depend on the TITLE
constant. For now, parameterize: alert(title, message) and debug(title,
message).

There are also advantages: by focusing only on the function out of
the context of the overall flow, I realized that I was leaving the tax rate
view open and dangling. In the function it is wrapped in a try/finally so
in all cases the view is closed properly.

Project Package

The project package contains all the code and constants specific to this
project.

2665093-volumetax.py

DEBUG = True
TITLE = "Volume Tax"
TAXAUTH = "VOLUME"
CONVOPTFIELD = "VOLCONV"

def check_prereqs(header_tax_auth, item_tax_auth=None):

 # If the customer tax authority doesn't match, no action
 if header_tax_auth != TAXAUTH:
 debug("Order Tax Auth is {}, not {}. Continuing".format(
 header_tax_auth, TAXAUTH))
 return False

 # If the detail line tax authority doesn't match, no action
 if item_tax_auth and item_tax_auth != TAXAUTH:
 debug("Item Tax Auth is {}, not {}. Continuing".format(
 item_tax_auth, TAXAUTH))
 return False

 return True

First Script Refactor

Alright, with a toolbox full of functions, let’s try refactoring the
invoice detail script.

###
OE0400 - Volume Tax - Invoice Details
#
This script automatically calculates the Volume tax for an invoice detail
line If and only if both the customer and the item have a tax authority of
TAXAUTH (default VOLUME)
###
from accpac import *
from extools import (alert,
 debug,
 success,
 all_lines_in,
 item_optfield_value,
 itemrate_for_authority,)
from 2665093-volumetax import (TITLE,
 DEBUG,
 CONVOPTFIELD,
 TAXAUTH,
 check_prereqs,)

View hooks

def onBeforeCompose(event):
 global oehdr
 if len(event.views):
 oehdr = event.views[0]
 return Continue

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action
 if not oehdr:
 alert("Order Detail is not composed. Continuing.")
 return Continue

 # If the customer/item tax authority doesn't match, no action
 if not check_prereqs(oehdr.get("TAUTH1"), me.get("TAUTH1")):
 return Continue

 # Set tax to calculate manually
 _put = oehdr.put("AUTOTAXCAL", 0)
 if not success(_put):
 alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Checkpoint - debugging to make sure we are capturing the right
 # details.
 debug("Tax Authority for Item and Customer is {}".format(TAXAUTH))

 itemno = me.get("ITEM")
 conversion = item_optfield_value(itemno, CONVOPTFIELD)
 tax_rate = itemrate_for_authority(
 TAXAUTH, oehdr.get("TCLASS1"), me.get("TCLASS1"))

 if not (conversion and tax_rate):
 alert("Unable to get conversion or tax rate. Volume tax "
 "calculation failed for {}".format(itemno))
 return Continue

 # Calculate the item tax, using the scaled quantity as the base.
 tax_base = me.get("QTYSHIPPED") * conversion
 tax_owed = tax_base * (tax_rate / 100)

 debug("Tax info: base {}, class {}, rate {}, owed {}.".format(
 tax_base, tax_class, tax_rate, tax_owed))

 _tbase = me.put("TBASE1", round(tax_base,2))
 _trate = me.put("TRATE1", round(tax_rate,2))
 _tamt = me.put("TAMOUNT1", round(tax_owed,2))

 if not success(_tbase, _trate, _tamt):
 alert("Could not put item tax base, rate, or amount.")

 return Continue

The script has been trimmed from 117 to 74 lines and is much more legible.

We can take it farther, although that may not be desirable. Readable and
maintainable trumps concise (particularly convoluted). But let’s try to make
a couple more changes:

	Fix the TITLE issue.

	Move to a more Pythonic exception based error handing.

	Put all view interactions in functions.

Maintaining a Little State

That pesky title. Changing the API to inlude the title every time
defeats the purpose of refactoring out the alert method in the
first place!

We can work around this by retaining a little state. Let’s introduce a
Notify class that stores the title and can be used to toggle debugging.

extools.py
from accpac import (showMessageBox, rotoID, openView)

class ExNotify():
 ALERT = 50
 DEBUG = 20

 def __init__(self, title, level=None):
 self.title = title
 if not level:
 level = self.ALERT
 self.level = level

 def alert(self, message):
 """Show a message box with title."""
 if self.level <= self.ALERT:
 showMessageBox("{}: {}".format(self.title, message))

 def debug(title, message):
 """Show a message box with rotoID and title if DEBUG is enabled."""
 if self.level <= self.DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, title, message))

Now, we can create an instance of a notifier at the top of our scripts and use
it throughout.

Aside: Exceptions

Choosing a scheme for handling errors in code can be challenging. Although
there are many choices, consistency is key. So let’s choose between using
Python’s native exceptions or sticking with a return value approach as
implemented in Extender.

The return value approach has been advocated for a lot recently. I think that
the Go language, which uses a pattern of multiple returns (result, error),
helped to restore weight. Using return values makes flow of control very easy
to understand.

Python has a rich exception handling system. The try/except/else/finally
construct is powerful and flexible but makes those gains at the expense of
simple control flow.

Languages like Go that prefer return values often provide another facility,
such as Go’s defer, that can be used to clean up after function execution.
This is key for resource management in the multiple returns approach. Without
it, every time an error is encountered, the code to clean up must be repeated
before the return.

Python’s defer is finally. For this reason, I lean towards exceptions
in Python. The control flow is pretty straight forward once you get used to
it.

Finally, exceptions need to be used consistently. I favour custom exception
wrappers that encapsulate a message that can be presented to the user. This
means error messages can be written close to the errors and leaves the option
to override higher op the stack.

	Convention:

	
	Custom code raises custom exceptions

	Custom exceptions should be subclassed so the user (developer) can
determine granularity of handling

	Exceptions contain a single phrase message explaining the issue suitable
for presentation to a user.

	Exception messages contain a single phrase or sentence that begins with
a lowercase letter and does not terminal with a period.

	Custom exceptions triggered by other exceptions contain a reference
to the original.

Adding Exception Handling

As a general best practices, libraries should only ever speak to the user if
they are configured for debugging. Our libraries are full of calls to alert
that should be moved up into the module. Wherever we find one, there is a good
chance it should be replaced by an exception.

extools.py
from accpac import (showMessageBox, rotoID, openView)

class ExToolsError(Exception):
 def __init__(self, message, original_exception=None)
 self.message = message
 self.original_exception = None

class ExToolsViewError(ExToolsError): pass

class ExNotify():
 ALERT = 50
 DEBUG = 20

 def __init__(self, title, level=None):
 self.title = title
 if not level:
 level = self.ALERT
 self.level = level

 def alert(self, message):
 """Show a message box with title."""
 if self.level <= self.ALERT:
 showMessageBox("{}: {}".format(self.title, message))

 def debug(title, message):
 """Show a message box with rotoID and title if DEBUG is enabled."""
 if self.level <= self.DEBUG:
 showMessageBox("{}\n\n{}: {}".format(rotoID, title, message))

 def __str__(self):
 return "ExNotify({}, {})".format(self.title, self.level)

def success(*args):
 """Were view operations successful?"""
 if sum(args) == 0:
 return True
 return False

def all_lines_in(detail_view):
 """Seeks the detail view to the first record and yields each one."""
 _rc = detail_view.recordClear()
 _browse = detail_view.browse("LINETYPE = 1", 1)

 if not success(_rc, _browse):
 raise ExToolsViewError("could not seek to first detail line")

 while success(detail_view.fetch()):
 yield detail_view

def item_optfield_value(itemno, field):
 """Get the value of an item optional field or None if unset."""
 icof = openView("IC0313")
 if not icof:
 raise ExToolsViewError("failed to open the optional field view")

 _rc = icof.recordClear()
 _pi = icof.put("ITEMNO", itemno)
 _po = icof.put("OPTFIELD", field)
 _r = icof.read()
 val = icof.get("VALUE")

 if not success(_rc, _pi, _po, _r) or not val:
 raise ExToolsViewError(
 "failed to read the {} optional field for {}".format(
 field, itemno))
 return None

 return val

def itemrate_for_authority(tax_auth, header_tax_class, item_tax_class,
 tax_type=1):
 """Get the itemrate for a given authority and item/header tax class."""
 try:
 tax_rate_view = openView("TX0004", 99)
 _auth = tax_rate_view.put("AUTHORITY", tax_auth)
 _sales = tax_rate_view.put("TTYPE", tax_type)
 _bclass = tax_rate_view.put("BUYERCLASS", header_tax_class)

 if not success(_auth, _sales, _bclass):
 raise ExToolsViewError("failed search for tax rate")

 # The read fails if the tax table entry does not exist.
 if not success(tax_rate_view.read()):
 raise ExToolsViewError("no tax rate table entry for {}".format(
 taxauth))

 # Return the correct item rate.
 return tax_rate_view.get("ITEMRATE{}".format(item_tax_class))
 finally:
 # Make sure that, regardless of what happens, the tax rate view is
 # closed if it has been opened.
 if tax_rate_view:
 tax_rate_view.close()

Now, let’s make the required changes in the module:

###
OE0400 - Volume Tax - Invoice Details
#
This script automatically calculates the Volume tax for an invoice detail
line If and only if both the customer and the item have a tax authority of
TAXAUTH (default VOLUME)
###
import accpac
from extools import (ExNotify,
 success,
 all_lines_in,
 item_optfield_value,
 itemrate_for_authority,
 ExToolsViewError,)
from 2665093-volumetax import (TITLE,
 DEBUG,
 CONVOPTFIELD,
 TAXAUTH,
 check_prereqs,)

View hooks

exn = ExNotify(TITLE)

def onBeforeCompose(event):
 global oehdr
 if len(event.views):
 oehdr = event.views[0]
 return Continue

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action
 if not oehdr:
 exn.alert("Order Detail is not composed. Continuing.")
 return Continue

 # If the customer/item tax authority doesn't match, no action
 if not check_prereqs(oehdr.get("TAUTH1"), me.get("TAUTH1")):
 return Continue

 # Set tax to calculate manually
 _put = oehdr.put("AUTOTAXCAL", 0)
 if not success(_put):
 exn.alert("Could not disable Auto Tax Calculation.")
 return Continue

 # Checkpoint - debugging to make sure we are capturing the right
 # details.
 debug("Tax Authority for Item and Customer is {}".format(TAXAUTH))

 itemno = me.get("ITEM")
 try:
 conversion = item_optfield_value(itemno, CONVOPTFIELD)
 tax_rate = itemrate_for_authority(
 TAXAUTH, oehdr.get("TCLASS1"), me.get("TCLASS1"))
 except ExToolsViewError as e:
 exn.alert("Error getting item and tax information: {}. "
 "Volume tax calculation failed for {}".format(
 e.message, itemno))

 # Calculate the item tax, using the scaled quantity as the base.
 tax_base = me.get("QTYSHIPPED") * conversion
 tax_owed = tax_base * (tax_rate / 100)

 exn.debug("Tax info: base {}, class {}, rate {}, owed {}.".format(
 tax_base, tax_class, tax_rate, tax_owed))

 _tbase = me.put("TBASE1", round(tax_base,2))
 _trate = me.put("TRATE1", round(tax_rate,2))
 _tamt = me.put("TAMOUNT1", round(tax_owed,2))

 if not success(_tbase, _trate, _tamt):
 exn.alert("Could not put item tax base, rate, or amount.")

 return Continue

Extracting View Interactions

Now that we’re playing with exceptions, let’s try removing all view
interactions and replacing them with sensible functions. There are a few
places that need addressing:

	Setting the AUTOTAXCAL field

	Calculating the tax

	Rounding and setting the tax values in the view

Let’s make two new methods: setup_order(oehdr) to set the manual tax
calculation field; calculate_and_set_detail_tax_rate(detail_view, tax_base,
tax_rate, round_to=2) to calculate and set the tax rate in the view.

2665093-volumetax.py
from extools import (ExToolsViewError, success,)

DEBUG = True
TITLE = "Volume Tax"
TAXAUTH = "VOLUME"
CONVOPTFIELD = "VOLCONV"

class VolumeTaxError(ExToolsViewError): pass

def check_prereqs(header_tax_auth, item_tax_auth=None):

 # If the customer tax authority doesn't match, no action
 if header_tax_auth != TAXAUTH:
 debug("Order Tax Auth is {}, not {}. Continuing".format(
 header_tax_auth, TAXAUTH))
 return False

 # If the detail line tax authority doesn't match, no action
 if item_tax_auth and item_tax_auth != TAXAUTH:
 debug("Item Tax Auth is {}, not {}. Continuing".format(
 item_tax_auth, TAXAUTH))
 return False

 return True

def setup_order(oehdr):
 _put = oehdr.put("AUTOTAXCAL", 0)
 if not success(_put):
 raise VolumeTaxError("failed to disable auto tax calculation")

def calculate_and_set_detail_tax_rate(
 detail_view, tax_base, tax_rate, round_to=2):
 # Calculate the item tax, using the scaled quantity as the base.
 tax_owed = tax_base * (tax_rate / 100)

 _tbase = detail_view.put("TBASE1", round(tax_base,2))
 _trate = detail_view.put("TRATE1", round(tax_rate,2))
 _tamt = detail_view.put("TAMOUNT1", round(tax_owed,2))

 if not success(_tbase, _trate, _tamt):
 raise VolumeTaxError(
 "failed to put item tax base, rate, or amount")

def calculate_and_set_header_tax_rate(
 header_view, detail_view, round_to=2):
 # Sum the tax due for the document header.
 tbase1 = 0
 tamt = 0

 for line in all_lines_in(detail_view):
 item_base = line.get("TBASE1")
 item_amount = line.get("TAMOUNT1")

 tbase1 += item_base
 tamt += item_amount

 _tbase = header_view.put("TBASE1", round(tbase1, 2))
 _tamt = header_view.put("TAMOUNT1", round(tamt, 2))

 if not success(_tbase, _tamt):
 raise VolumeTaxError(
 "failed to put header tax base or amount")

Now let’s roll that in to the module.

###
OE0400 - Volume Tax - Invoice Details
#
This script automatically calculates the Volume tax for an invoice detail
line If and only if both the customer and the item have a tax authority of
TAXAUTH (default VOLUME)
###
import accpac
from extools import (ExNotify,
 ExToolsViewError,
 success,
 all_lines_in,
 item_optfield_value,
 itemrate_for_authority,)
from 2665093-volumetax import (TITLE,
 DEBUG,
 CONVOPTFIELD,
 TAXAUTH,
 setup_order,
 check_prereqs,
 calculate_and_set_detail_tax_rate,)

exn = ExNotify(TITLE)

View Hooks
def onBeforeCompose(event):
 global oehdr
 if len(event.views):
 oehdr = event.views[0]
 return Continue

def onBeforeInsert():
 global oehdr

 # If the view is not composed, no action
 if not oehdr:
 exn.alert("Order Detail is not composed. Continuing.")
 return Continue

 # If the customer/item tax authority doesn't match, no action
 if not check_prereqs(oehdr.get("TAUTH1"), me.get("TAUTH1")):
 return Continue

 itemno = me.get("ITEM")
 header_tax_class = oehdr.get("TCLASS1")
 item_tax_class = me.get("TCLASS1")
 quantity = me.get("QTYSHIPPED")

 try:
 # Set tax to calculate manually
 setup_order(oehdr)

 # Calculate the tax base based on optfield conversion factor
 conversion = item_optfield_value(itemno, CONVOPTFIELD)
 tax_base = quantity * conversion

 # Calculate the item tax, using the scaled quantity as the base.
 tax_rate = itemrate_for_authority(
 TAXAUTH, header_tax_class, item_tax_class)
 calculate_and_set_detail_tax_rate(me, tax_base, tax_rate)
 except ExToolsViewError as e:
 exn.alert("Error getting item and tax information: {}. "
 "Volume tax calculation failed for {}.".format(
 e.message, itemno))

 return Continue

Our module is now totally focused on the customer’s business logic, is
highly readable, and easily extendable. The line count is down to 64 from
117.

What of the header script?

##
OE0420 - Volume Tax - Invoice Header
#
This script automatically calculates the Tax Base 1 and Tax Amount 1
for an invoice header if the customer has a tax authority of
TAXAUTH (default VOLUME)
##
from accpac import *
from extools import (ExNotify,
 ExToolsViewError,
 success,
 all_lines_in,)
from 2665093-volumetax import (TITLE,
 DEBUG,
 CONVOPTFIELD,
 TAXAUTH,
 setup_order,
 check_prereqs,
 calculate_and_set_header_tax_rate,)

exn = ExNotify(TITLE)

View hooks
def onBeforeCompose(e):
 global oedtl
 if len(views):
 oedtl = e.views[0]

 return Continue

def onBeforeInsert():
 global oedtl

 # If the view is not composed, no action
 if not oedtl:
 return Continue

 # If the header tax authority doesn't match, no action
 if not check_prereqs(me.get("TAUTH1")):
 exn.alert("Item Tax Auth is {}, not {}. Continuing".format(
 me.get("TAUTH1"), TAXAUTH))
 return Continue

 try:
 # Set tax to calculate manually
 setup_order(me)
 calculate_and_set_header_tax_rate(me, oedtl)
 except ExToolsViewError as e:
 exn.alert("Error getting item and tax information: {}. "
 "Volume tax calculation failed for {}.".format(
 e.message, itemno))

 return Continue

Much more concise and to the point. The module is down to 54 lines from 88.
Code reuse is solid both within and across scripts.

Where did we start? The first working implementation had a module header and
three sets of two (nearly) identical scripts without the optional field
conversion handling. Total line count:

	Module Header: 9

	Header Script: 88 * 3 = 264

	Detail Script: 117 * 3 = 351

	Total = 624

The latest implementation:

	Module Header: 9

	Header Script: 54 * 3 = 162

	Detail Script: 64 * 3 = 192

	Total: 363

The module is now (363/624) =~ 60% of the original - 40% fewer lines to
maintain, but there were the two modules…

	2665093-volumetax: 62

	extools: 93

	Total Package lines: 155

	Total Package + Module lines: 363 + 155 = 518

This is where how you count matters; lies, damned lies, and statistics after
all. The code in extools is reusable across other projects as well. It is
code paid forward, saving time in future projects, and improving consistency
across modules.

This becomes even more evident as the solution is scaled up. Not long after
delivering a version with the optional field functionality working, a new
requirement emerged: it must work with OE Credit/Debit notes as well.

[image: ../_images/oe_doctype_count_v_loc.png]

The number of lines of code using a flat module or supporting packages
given the number of OE document type scripts required.

Note that for the first case, one OE document type, fewer lines are required
using the flat module approach. This makes sense: there is more overhead in
writing the additional packages and that overhead must be reclaimed through
reuse.

Another perspective we could take is: what is extools were already
developed as they will not be before the next project. In that case,
the package approach always results in less code than a flat module.

[image: ../_images/oe_doctype_count_v_loc_noex.png]

The number of lines of code using a flat module or supporting packages
given the number of OE document type scripts required.

A Two Script Solution

Using the package approach, the scripts are very lean and focused on the
customer problem. Now that they are, it is clear to me that the six script
idea is unecessary. I am often inclined to thing that, because of the
inconsistencies in the Sage view field naming, everything must be custom.
But much is easily parameterized.

The business logic is nearly identical in all cases. In fact, header scripts
are all exactly the same. There is only a one line difference in the detail
line scripts: the calculation of the tax base uses a different quantity field:

	Orders: QTYORDERED

	Invoices: QTYSHIPPED

	Shipments: QTYSHIPPED

	Credit Notes: QTYRETURN

View scripts accept parame